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gravity waves on fluid of finite depth

By T. KATAOKA
Department of Mechanical Engineering, Faculty of Engineering, Kobe University, Rokkodai,

Nada, Kobe 657-8501, Japan

(Received 16 August 2005 and in revised form 10 October 2005)

The linear stability of two-dimensional surface gravity waves on fluid of finite depth
is investigated for superharmonic disturbances. For this problem, Zufiria & Saffman
(Stud. Appl. Maths vol. 74, 1986, p. 259) suggested that an exchange of stability
occurs when the total wave energy becomes stationary as a function of wave speed
for fixed ‘Bernoulli constant’. In defining the potential energy of the above total wave
energy, the surface displacement was measured from the quiescent surface with the
same ‘Bernoulli constant’. We have re-examined this problem both analytically and
numerically, and found that the above ‘Bernoulli constant’ must be replaced by ‘mean
surface height’ for the statement to be valid.

1. Introduction
We consider the linear stability of two-dimensional periodic surface gravity waves

on fluid of finite depth under the restriction that disturbances are periodic in one
wavelength of the basic wave, so called superharmonic stability. The previous studies
on the superharmonic stability of surface gravity waves are mainly for deep fluid,
or fluid of infinite depth. Longuet-Higgins (1978) was the first to treat this problem.
Tanaka (1983) found numerically that an exchange of stability occurs when the total
wave energy becomes stationary as a function of wave speed. Saffman (1985) gave its
analytical proof using Zakharov’s Hamiltonian formulation (Zakharov 1968). Detailed
numerical results of the linear stability analysis were then presented by Longuet-
Higgins & Tanaka (1997). Thus, great progress was achieved in understanding the
superharmonic stability of surface gravity waves on deep fluid.

Waves on fluid of finite depth were treated first by Zufiria & Saffman (1986). They
extended Saffman’s theory, and obtained the analytical result that an exchange of
stability occurs when the total wave energy becomes stationary as a function of wave
speed for fixed ‘Bernoulli constant’. This fixed parameter must be given, since the
periodic surface waves on fluid of finite depth are characterized by two parameters,
unlike those on deep fluid that are characterized by a single parameter. In addition,
the surface displacement, which constitutes the above total wave energy, was measured
from the quiescent surface with the same ‘Bernoulli constant’ in their analysis. On the
other hand, according to our analysis, the result was fundamentally different. That is,
the above-mentioned ‘Bernoulli constant’ must be replaced by ‘mean surface height’
for the above statement to be true.

In this paper, we explain our analysis and point out a problem of Zufiria &
Saffman’s analysis. Instead of introducing the Hamiltonian formulation with complex
canonical variables, we here solve the eigenvalue problem directly using an asymptotic
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analysis for small eigenvalues, or small growth rates of disturbances (Kataoka 2006).
This direct method has the advantage over the Hamiltonian formulation in that
the physical meaning of each term is readily understandable. After describing our
analysis, we verify the result numerically. Concluding remarks follow.

2. Basic equations
Let us consider the two-dimensional irrotational motion of an incompressible ideal

fluid with a free surface. The fluid, which lies on a flat bottom, is subject to a uniform
gravitational acceleration g. The effects of surface tension are neglected. All variables
are non-dimensionalized using g and a reference length L. For the moment we leave
L unspecified (it is specified after (2.7)). Introducing the two-dimensional Cartesian
coordinates x, y with y vertically upward and their origin located at the bottom, we
obtain the following set of dimensionless governing equations for the fluid motion:

�φ = 0 (0 < y < η), (2.1)

with boundary conditions

∂η

∂t
+

∂φ

∂x

∂η

∂x
=

∂φ

∂y
at y = η, (2.2)

∂φ

∂t
+

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]

+ η = f (t) at y = η, (2.3)

∂φ

∂y
= 0 at y = 0, (2.4)

where

� =
∂2

∂x2
+

∂2

∂y2
, (2.5)

t is the time, φ(x, y, t) is the velocity potential, η(x, t) is the height of the surface
from the bottom, and f (t) is a given function of t .

Let us consider the steady solution of (2.1)–(2.4) in the following form:

φ = −cx + Φs(x, y; b, c), η = ηs(x; b, c), (2.6a, b)

with

f (t) = b + 1
2
c2, (2.7)

where b and c are given positive constants, and the functions Φs and ηs are periodic
in x with unit period. Solution (2.6a, b) represents a periodic wave that propagates
steadily against a uniform stream of constant velocity −c in the x-direction, and
whose Bernoulli constant (relative to the uniform stream φ = −cx) is b. We consider
the solution of this class with all crests being of the same height and all troughs of
a different same height, and call it ‘basic wave solution’. Since the non-dimensional
wavelength of this wave is set at unity, the reference length L of the system mentioned
at the first paragraph of this section is the wavelength of this basic wave. Substituting
(2.6a, b) into (2.1)–(2.4), we obtain a set of governing equations for Φs and ηs as
follows:

∂2Φs

∂x2
+

∂2Φs

∂y2
= 0 for 0 < y < ηs, (2.8)
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−c +

∂Φs

∂x

)
dηs

dx
=

∂Φs

∂y
at y = ηs, (2.9)

−c
∂Φs

∂x
+

1

2

[(
∂Φs

∂x

)2

+

(
∂Φs

∂y

)2
]

+ ηs = b at y = ηs, (2.10)

∂Φs

∂y
= 0 at y = 0. (2.11)

Since Φs is periodic in x with unit period, we can impose the condition
∫ 1/2

−1/2
Φs dx = 0

at one particular level y = constant beneath the wave troughs, and hence (from (2.8)
and (2.11)) at all levels within the fluid. Then, the origin of the x-coordinate can be
chosen such that Φs is odd and ηs is even in x, since this basic wave is symmetric
about its crest and trough according to Garabedian (1965).

In order to investigate the linear stability of the above basic wave with respect
to disturbances that are periodic in one wavelength of the basic wave, the solution
of (2.1)–(2.4) is expressed as summation of the basic wave solution (2.6a, b) and its
disturbances:

φ = −cx + Φs + φ̂(x, y) exp(λ t), η = ηs + η̂(x) exp(λ t), (2.12a, b)

where λ is a complex constant to be determined, and φ̂ and η̂ are periodic in x

with unit period. Substituting (2.12a, b) into (2.1)–(2.4) and linearizing with respect
to (φ̂, η̂), we obtain the following set of linear equations for (φ̂, η̂):

�φ̂ = 0 for 0 < y < ηs, (2.13)

L1[φ̂, η̂] = −λη̂ at y = ηs, (2.14)

L2[φ̂, η̂] = −λφ̂ at y = ηs, (2.15)

∂φ̂

∂y
= 0 at y = 0, (2.16)

where L1 and L2 are linear operators defined by

L1[φ̂, η̂] =

(
− ∂

∂y
+

dηs

dx

∂

∂x

)
φ̂ +

[
∂2Φs

∂x2
+

∂2Φs

∂x∂y

dηs

dx
+

(
−c +

∂Φs

∂x

)
d

dx

]
η̂, (2.17)

L2[φ̂, η̂] =

[(
− c +

∂Φs

∂x

)
∂

∂x
+

∂Φs

∂y

∂

∂y

]
φ̂ +

[(
− c +

∂Φs

∂x

)
∂2Φs

∂x∂y
+

∂Φs

∂y

∂2Φs

∂y2
+ 1

]
η̂.

(2.18)

Equations (2.13)–(2.16) together with periodic conditions for (φ̂, η̂) constitute an
eigenvalue problem for (φ̂, η̂) whose eigenvalue is λ. When this problem possesses a
solution whose eigenvalue λ has positive real part, the corresponding basic wave is
superharmonically unstable.

Before proceeding to the next section, we define two dimensionless integral
properties of the basic wave: the mean surface height from the bottom and the
total wave energy per wave cycle. The mean surface height η̄s from the bottom is

η̄s (b, c) ≡
∫ 1/2

−1/2

ηs dx, (2.19)
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which differs from b in general (see tables 1 and 2 below for specific examples). For
the total wave energy, we must decide how the surface displacement is defined, and
we will give two different definitions. The first one is defined in terms of surface
displacement measured from a quiescent surface y = b of fixed Bernoulli constant b.
The corresponding total wave energy E per wave cycle is

E (b, c) ≡ 1

2

∫ 1/2

−1/2

{∫ ηs

0

[(
∂Φs

∂x

)2

+

(
∂Φs

∂y

)2
]

dy + (ηs − b)2

}
dx. (2.20)

Zufiria & Saffman (1986) used this definition. The second one is defined in terms of
surface displacement measured from the mean surface height y = η̄s . The corres-
ponding total wave energy Ē per wave cycle is

Ē (η̄s, c) ≡ 1

2

∫ 1/2

−1/2

{∫ ηs

0

[(
∂Φs

∂x

)2

+

(
∂Φs

∂y

)2
]

dy + (ηs − η̄s)
2

}
dx

= E (b, c) − (η̄s − b)2

2
. (2.21)

We will see that the latter definition (2.21) is more significant in discussing the
superharmonic instability.

3. Asymptotic analysis
We will investigate how an exchange of stability occurs, or how the eigenvalue λ

in (2.13)–(2.16) goes through zero from pure imaginary to real. To this end, we make
an asymptotic analysis of (2.13)–(2.16) for small |λ|. That is, we seek the asymptotic

solution (φ̂, η̂) as |λ| → 0 of (2.13)–(2.16) with an appreciable variation in x and y

of order unity (∂φ̂/∂x = O(φ̂), ∂φ̂/∂y = O(φ̂), and dη̂/dx = O(η̂)), in the following
power series of λ:

φ̂ = φ̂0 + λφ̂1 + λ2φ̂2 + · · · , η̂ = η̂0 + λη̂1 + λ2η̂2 + · · · . (3.1a, b)

Substituting the series (3.1a, b) into (2.13)–(2.16) and arranging the same-order terms
in |λ|, we obtain a series of sets of equations for (φ̂n, η̂n) (n = 0, 1, 2, . . .):

�φ̂n = 0 for 0 < y < ηs, (3.2)

L1[φ̂n, η̂n] = −η̂n−1 at y = ηs, (3.3)

L2[φ̂n, η̂n] = −φ̂n−1 at y = ηs, (3.4)

∂φ̂n

∂y
= 0 at y = 0, (3.5)

where �, L1, and L2 are defined by (2.5), (2.17), and (2.18) respectively. Note that φ̂n

and η̂n (n = 0, 1, 2, . . .) are periodic in x with unit period and φ̂−1 = η̂−1 = 0.
At n = 0, the above set of equations (3.2)–(3.5) is homogeneous, and has the

following solution:

φ̂0 = α + β
∂Φs

∂x
, η̂0 = β

dηs

dx
, (3.6)

where α and β are arbitrary constants to be determined. (φ̂0, η̂0) = (∂Φs/∂x, dηs/dx)
comes from invariance of the system (2.8)–(2.11) under the horizontal shift.
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At n = 1, 2, . . ., the set of equations (3.2)–(3.5) is inhomogeneous. Its homogeneous
part, which is the same as that at n = 0, has two non-trivial fundamental solutions
(φ̂n, η̂n) = (1, 0) and (∂Φs/∂x, dηs/dx). Therefore, for this set of inhomogeneous
equations (3.2)–(3.5) at n = 1, 2, . . . to have a solution, its inhomogeneous terms
−η̂n−1 and −φ̂n−1 (n = 1, 2, . . .) on the right-hand sides of (3.3) and (3.4) must satisfy
some relations. Since the homogeneous part satisfies∫ 1/2

−1/2

dx

∫ ηs

0

�φ̂ndy +

∫ 1/2

−1/2

[L1[φ̂n, η̂n]]y=ηs
dx = 0,

∫ 1/2

−1/2

dx

∫ ηs

0

∂Φs

∂x
�φ̂ndy +

∫ 1/2

−1/2

[
∂Φs

∂x
L1[φ̂n, η̂n] − dηs

dx
L2[φ̂n, η̂n]

]
y=ηs

dx = 0,

its inhomogeneous terms −η̂n−1 and −φ̂n−1 must satisfy the following relations
(solvability conditions):

n∑
m=1

λm

∫ 1/2

−1/2

η̂m−1dx = o(|λ|n), (3.7a)

n∑
m=1

λm

∫ 1/2

−1/2

[
−∂Φs

∂x
η̂m−1 +

dηs

dx
φ̂m−1

]
y=ηs

dx = o(|λ|n) (3.7b)

(n = 1, 2, . . .)

where the quantities in the square brackets with subscript y = ηs are evaluated at
y = ηs , and o(|λ|n) represents terms of order smaller than |λ|n.

Substituting (3.6) into (3.7a, b) at n = 1, we find that the solvability conditions at
n = 1 are identically satisfied, and the solution of (3.2)–(3.5) at n = 1 is

φ̂1 = −α
∂Φs

∂b
− β

∂Φs

∂c
, η̂1 = −α

∂ηs

∂b
− β

∂ηs

∂c
, (3.8a, b)

where ∂/∂b denotes the derivative with respect to b for fixed x, y, c, and ∂/∂c

denotes that with respect to c for fixed x, y, and b. The homogeneous solution (3.6)
multiplied by an arbitrary constant is omitted in (3.8a, b), since it can be included
in the leading-order solution (3.6). One can check that the solution (3.8a, b) satisfies
(3.2)–(3.5) at n = 1 by differentiating (2.8)–(2.11) with respect to b or c.

Substituting (3.8a, b) into (3.7a, b) at n = 2, we find that the solvability conditions
at n = 2 are

λ2

(
α

∂η̄s

∂b
+ β

∂η̄s

∂c

)
= o(|λ|2), (3.9a)

λ2

c

[
α

(
∂E

∂b
+ η̄s − b

)
+ β

∂E

∂c

]
= o(|λ|2), (3.9b)

where η̄s and E are defined by (2.19) and (2.20), respectively. From (3.9a, b), the
condition for the existence of solution (φ̂2, η̂2) with non-zero (α, β) is

λ2W1 = o(|λ|2), (3.10)

where

W1 =
∂E

∂c
−

(
∂E

∂b
+ η̄s − b

)(
∂η̄s

∂b

)−1
∂η̄s

∂c
(3.11a)
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=
∂E

∂c
− c

(
∂η̄s

∂b

)−1(
∂η̄s

∂c

)2

, (3.11b)

and the following relation is used to derive (3.11b):

1

c

(
∂E

∂b
+ η̄s − b

)
=

∂η̄s

∂c
. (3.12)

One can obtain (3.12) by calculating
∫ 1/2

−1/2
[−(dηs/dx)∂Φs/∂b + (∂Φs/∂x)∂ηs/∂b]y=ηs

dx in two different ways. The first is to replace dηs/dx and ∂Φs/∂x inside the above
integral by the corresponding terms in (2.9) and (2.10), which gives the left-hand side
of (3.12). The second way is to replace dηs/dx and ∂Φs/∂x by the left-hand-side terms
of (3.3) and (3.4) at n = 1 with (3.8a, b) at α = 0 and β = −1, or L1[∂Φs/∂c, ∂ηs/∂c]
and L2[∂Φs/∂c, ∂ηs/∂c], and integrate the result by parts, which gives the right-hand
side of (3.12). When condition (3.10) is satisfied, the solution (φ̂2, η̂2) of (3.2)–(3.5) at
n = 2 exists, although its explicit form cannot be obtained. Here we only find that
φ̂2 is even and η̂2 is odd in x by examining the order of the differential operators
with respect to x of (3.2)–(3.5) and noting the parity in x of the basic wave solution
(Φs, ηs) (Φs is odd and ηs is even; see the statement after (2.11)) and that of the
inhomogeneous terms (−φ̂1, −η̂1) (φ̂1 is odd and η̂1 is even).

Let us proceed to the next order n = 3. From the parity in x of (Φs, ηs) and (φ̂2, η̂2)
mentioned above, the integrands of O(|λ|3) in the solvability conditions (3.7a, b) are
odd in x, so that the corresponding integrals vanish. The solvability conditions at
n = 3, therefore, remain the same form as those (3.7a, b) at n = 2, and the solution
(φ̂3, η̂3) of (3.2)–(3.5) at n = 3 exists. By examining the order of differential operators
with respect to x of (3.2)–(3.5) and noting the parity in x of the basic wave solution
(Φs, ηs) (Φs is odd and ηs is even) and that of the inhomogeneous terms (−φ̂2, −η̂2)
(φ̂2 is even and η̂2 is odd), we find that φ̂3 is odd and η̂3 is even in x.

Let us proceed to the next order n = 4. The solvability conditions at n = 4 are
written in the following form:

λ2

(
α

∂η̄s

∂b
+ β

∂η̄s

∂c

)
+ λ4(αS1 + βS2) = o(|λ|4), (3.13a)

λ2

c

[
α

(
∂E

∂b
+ η̄s − b

)
+ β

∂E

∂c

]
+ λ4(αS3 + βS4) = o(|λ|4), (3.13b)

where S1, S2, S3, and S4 are obtained by equating terms with α and those with β of
the following equations:

αS1 + βS2 =

∫ 1/2

−1/2

−η̂3 dx, (3.14a)

αS3 + βS4 =

∫ 1/2

−1/2

[
−∂Φs

∂x
η̂3 +

dηs

dx
φ̂3

]
y=ηs

dx. (3.14b)

Condition (3.13b) with α = 0 is that obtained by Zufiria & Saffman (1986), and this
condition indicates that an exchange of stability occurs at ∂E/∂c = 0. However,
another condition (3.13a) must be taken into account, since it appears as the solvability
condition to be satisfied. Zufiria & Saffman (1986) overlooked another eigenfunction
(i
√

|k|δ(k), i
√

|k|δ(k)) of the adjoint operator L+ with σ = 0 in their analysis (see (24)
of their paper) where δ(k) is the Dirac delta function. This eigenfunction leads to the
solvability condition corresponding to (3.13a). Physically, this equation (3.13a) has
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the role of balancing the mass of fluid when the mean surface height η̄s (b, c) of the
basic wave changes due to its modulation.

From (3.13a, b), the condition for the existence of solution (φ̂4, η̂4) with non-zero
(α, β) is

λ2W1 + λ4W2 = o(|λ|4), (3.15)

where W1 is given by (3.11a, b), and W2 is expressed as

W2 = c

[(
∂η̄s

∂c

)2(
∂η̄s

∂b

)−2

S1 − ∂η̄s

∂c

(
∂η̄s

∂b

)−1

(S2 + S3) + S4

]
, (3.16)

with the aid of (3.12). Since φ̂3 and Φs are odd, and η̂3 and ηs are even in x, the
integrands on the right-hand sides of (3.14a, b) are even in x, so that the corresponding
integrals rarely vanish. Therefore, W2 defined by (3.16) is non-zero in general, and
(3.15) gives

λ =




0, ±

√∣∣∣∣W1

W2

∣∣∣∣ when
W1

W2

< 0,

0, ±i

√
W1

W2

when
W1

W2

> 0.

(3.17)

The solution (3.17), which is valid for |λ| � 1, indicates that an exchange of stability
occurs at W1 = 0 where W1 is defined by (3.11a, b). The critical amplitude is different
from the point where ∂E/∂c = 0, since the second terms on the right-hand sides of
(3.11a, b) are non-zero. Thus, an exchange of stability occurs not at ∂E/∂c = 0 but
at W1 = 0. If we evaluate W1 in terms of another definition (2.21) of the total wave
energy Ē (η̄s, c) of the basic wave, we find

W1 =
∂Ē

∂c

∣∣∣∣
η̄s

, (3.18)

where ∂/∂c|η̄s
denotes the derivative with respect to c for fixed η̄s . Thus, an exchange

of stability occurs at the stationary value of the total wave energy Ē for fixed η̄s ,
where Ē is defined by (2.21) and η̄s is the mean surface height defined by (2.19). This
is the main result of this paper.

If we introduce the impulse I of the basic wave defined by

I (η̄s, c) =

∫ 1/2

−1/2

dx

∫ ηs

0

∂Φs

∂x
dy, (3.19)

W1 is expressed as

W1 = c
∂I

∂c

∣∣∣∣
η̄s

, (3.20)

which means that an exchange of stability occurs at the stationary value of I for
fixed η̄s , or ∂I/∂c|η̄s

= 0.

4. Numerical verification
We will verify the above result numerically. The numerical method is fundamentally

based on Tanaka (1986), which was originally devised for investigating the stability
of solitary waves. We will give a brief explanation of the numerical method focusing
on a difference from his method. Here the variable x − Φs/c on the free surface
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(b, qc) =(0.03,0.25505)
N a η̄s λ

60 0.0222088233 0.0298327274 0.043868
120 0.0222088210 0.0298327274 0.044600
240 0.0222088209 0.0298327274 0.044604
480 0.0222088209 0.0298327274 0.044605

(b, qc) =(0.1,0.2459)
N a η̄s λ

60 0.0671285940 0.0991220137 0.059178
120 0.0671283429 0.0991220218 0.059142
240 0.0671283115 0.0991220225 0.059120
480 0.0671283075 0.0991220226 0.059117

Table 1. Convergence of the basic wave (a: crest-to-trough height; η̄s: mean surface height)
and the growth rates λ of the unstable disturbance mode for (b, qc) =(0.03,0.25505) and
(0.1,0.2459). These two cases correspond to the wave amplitudes at ∂E/∂c = 0.

is employed as an independent variable, and unknown variables are represented at
discrete mesh points appropriately distributed along the free surface for the range
0 � x − Φs/c � 1/2. By concentrating the mesh points toward a wave crest, one can
capture a steep variation of solution near the crest. With a crest at x − Φs/c = 0, we
employ

x − Φs

c
=

1

2

(
γi +

P − 1

π
sin πγi

)
, (4.1)

where N + 1 mesh points are distributed at γi = i/N (i = 0, 1, 2, . . . , N), and P

is a small positive constant. Then d
(
x − Φs/c

)/
dγi is periodic in γi and infinitely

differentiable with respect to γi even at x − Φs/c = 0 and 1/2, where symmetric and
periodic conditions are imposed, respectively. The remaining numerical procedure is
the same as that explained in Tanaka (1986) so that the reader is referred to that
paper. Table 1 shows some numerical results thus obtained: the convergence of the
crest-to-trough height a ≡ ηs(0)−ηs(1) and the mean surface height η̄s of basic waves
as well as the growth rates λ of the unstable disturbance mode, as the number N of
mesh points increases for given b and qc defined by

qc ≡ 1

c




√(
c − ∂Φs

∂x

)2

+

(
∂Φs

∂y

)2




x=0,y=ηs

, (4.2)

are shown. We find that convergence is achieved up to six and seven significant figures
for a and η̄s respectively, and up to three significant figures for λ with only N = 120.

Figure 1 shows the growth rates λ of the unstable disturbance mode thus obtained
for b = 0.03 and 0.1. One can clearly see that an exchange of stability occurs
not at ∂E/∂c = 0 but at ∂Ē

/
∂c

∣∣
η̄s

= 0. At the wave amplitude corresponding to

∂E/∂c = 0, the basic waves are clearly unstable. The corresponding growth rates λ of
the unstable disturbance mode are given in table 1, which shows a good convergence
of λ to positive values. Thus, our analytical result that an exchange of stability occurs
not at ∂E/∂c = 0 but at ∂Ē

/
∂c

∣∣
η̄s

= 0, has been verified numerically. Table 2 shows
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Figure 1. Growth rates λ of the unstable disturbance mode versus crest-to-trough height a of
the basic wave: (a) b = 0.03, (b) b = 0.1. The arrows show the positions of ∂Ē/∂c

∣∣
η̄s

= 0 and

∂E/∂c = 0.

b a η̄s

0.01 0.0076577 0.0099771
0.02 0.015046 0.019918
0.03 0.022200 0.029833
0.05 0.035913 0.049622
0.1 0.067102 0.099122
0.2 0.11034 0.19912
0.3 0.12837 0.29963
0.5 0.13591 0.49997
∞ 0.13660 ∞

Table 2. Crest-to-trough heights a of surface gravity waves at which an exchange of stability
occurs for various values of the Bernouilli constant b. The corresponding mean surface heights
η̄s are also shown.

the crest-to-trough heights a of the surface gravity waves at which an exchange of
stability occurs for various values of b.

It should be noted that the branch of unstable eigenvalues λ meets the a-axis λ = 0
at right angles (figure 1). The same feature is seen for periodic waves on deep fluid
(Tanaka 1983, 1985). In the case of solitary waves, however, the branch meets the
wave-amplitude axis λ = 0 at acute angles according to numerical studies by Tanaka
(1986). An analytical proof is found in Kataoka (2006).

5. Concluding remarks
The linear stability of periodic surface gravity waves on fluid of finite depth to

superharmonic disturbances is examined both analytically and numerically. It is found
that an exchange of stability occurs at the stationary value of the total wave energy
as a function of wave speed for fixed ‘mean surface height’. The surface displacement,
which constitutes the above total wave energy, must be measured from the ‘mean
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surface height’. It is important to know the law of nature precisely, since it lays the
foundations of understanding the physical mechanism.

There is one important unanswered question concerning the mechanism of the
superharmonic instability: why does an exchange of stability occur at the extremum
in the total wave energy? Longuet-Higgins & Cleaver (1994) showed that the crest
of a steep wave, considered in isolation, is linearly unstable, and suggested that
the superharmonic instability is caused by the steepness of the crest (Longuet-
Higgins, Cleaver & Fox 1994; Longuet-Higgins & Dommermuth 1997). We should
seek, however, some physical mechanism that connects the above two fundamentally
different characters: the crest instability, which is a local phenomenon, and the
extremum in the total wave energy, which is a global quantity.
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